Humor Detection
Bradley Paliska, bp355
Data from Kaggle: 200K SHORT TEXTS FOR HUMOR DETECTION

https://www.kaggle.com/datasets/deepcontractor/200k-short-texts-for-humor-detection

import warnings
warnings.filterwarnings('ignore')

import pandas as pd

from wordcloud import WordCloud, STOPWORDS

import numpy as np

import matplotlib.pyplot as plt

import matplotlib

from sklearn.utils import shuffle

from sklearn.model selection import train test split
import os

import random

from sklearn.model selection import train_ test split
from transformers import BertTokenizer, BertForSequenceClassification,
Trainer, TrainingArguments

import torch

from sklearn.metrics import classification report
from sklearn.metrics import confusion matrix

import seaborn as sns

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.callbacks import *

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import *

from tensorflow.keras.utils import to categorical

from tensorflow.keras.preprocessing.sequence import pad sequences
from tensorflow.keras.preprocessing.text import Tokenizer

from collections import defaultdict

Reading the CSV file into a DataFrame
df = pd.read csv('dataset.csv')
print(df.head())

print(df.shape)

text humor
0 Joe biden rules out 2020 bid: 'guys, i'm not r... False
1 Watch: darvish gave hitter whiplash with slow ... False
2 What do you call a turtle without its shell? d... True
3 5 reasons the 2016 election feels so personal False
4 Pasco police shot mexican migrant from behind,... False
(200000, 2)

https://www.kaggle.com/datasets/deepcontractor/200k-short-texts-for-humor-detection

df.humor.value counts()

False 100000
True 100000
Name: humor, dtype: int64

plt.rcParams.update({'font.size': 13})

label = ['True', 'False']

count = [len(df[df[" 'humor']==Truel),
len(df[df["'humor']==False])]

plt.pie(count, labels = label,startangle=-90, explode=[0.1,0])
plt.show()

False True

The data is evenly split: 100000 True and 100000 False

tokenizer = Tokenizer(filters=""&(),-/:;<=>[\\1 "{|}~\t\n0123456789",
lower=True, split="' ")

tokenizer.fit on texts(np.array(df['text']))

vocab size = len(tokenizer.word index) + 1

Initialize the Tokenizer with custom filters, set to lowercase and split on spaces, then fit it to the
text data and calculate the vocabulary size

maxlen= 15
df['humor'] = df['humor'].apply(lambda x: {True:1l, False:0}.get(x))

texts = np.array(df['text'])
texts = tokenizer.texts to sequences(texts)
for x in range(len(texts)):

if len(texts[x])>maxlen:

texts[x]=texts[x][:maxlen]

texts = pad sequences(texts, maxlen=maxlen, dtype='float"',
padding="'post', value=0.0)
texts = np.array(texts)
labels = df['humor']
labels np.array([float(j) for j in labels])

df.head() # 0= False and 1= True

text humor

Joe biden rules out 2020 bid: 'guys, i'm not r...
Watch: darvish gave hitter whiplash with slow ...
What do you call a turtle without its shell? d...
5 reasons the 2016 election feels so personal
Pasco police shot mexican migrant from behind,...

HPWNRER O
[oNoN NoNo]

Set a maximum sequence length, convert humor labels to binary, tokenize and truncate/pad text
sequences, and create arrays for text data and labels

Step 1: Create a dictionary to store the count of occurrences for
each unique word
word counts = defaultdict(int)

Step 2: Iterate through the DataFrame and tokenize the text
for index, row in df.iterrows():
text, humor = row['text'], row['humor']
if humor == True: # Considering only humorous words
tokens = tokenizer.texts to sequences([text])[0] # Use the
tokenizer you provided
tokens = [tokenizer.index word[token] for token in tokens] #
Convert token indices back to words

Step 3: Update the dictionary with the count of occurrences
for token in tokens:
word counts[token] += 1

Step 4: Sort the words by their count of occurrences and display the
top results

sorted words = sorted(word counts.items(), key=lambda x: x[1],
reverse=True)

Display the top 10 most humorous words by count
for word, count in sorted words[:10]:
print(f"{word}: {count}")

a.

59517

the: 50048

you:
26747

i:
to:

28648

24322

what: 22970

do:
in:
of:
is:

18094
15519
15209
14741

As expected a lot of basic words that are not very insighful.

text len = [len(x) for x in list(df['text'])]

fig, ax = plt.subplots(figsize=(6, 6))

plt.

plt
plt

hist(text len, bins=10)

.Xlabel("Text Character Length")
.ylabel("Count")

plt.
plt.

title("Histogram Distribution of Text Length")
show()

Histogram Distribution of Text Length

35000 A

30000 A

25000 A

20000 A

Count

15000 A

10000 A

5000 A

30 40 50 60 70 80 90 100
Text Character Length

List of additional stopwords to be excluded from the word cloud
list words _add = ['none'] # wors to not include
STOPWORDS .update(list words add)

all nonhumorous words = "'
for idx, row in df.iterrows():
if row['humor'] ==
all nonhumorous words += ' ' + row['text'].strip()

wc = WordCloud(width=1024, height=1024, min font size=8,
stopwords=STOPWORDS) .generate(all _nonhumorous words)

Display the word cloud
plt.figure(figsize=(8, 8))
plt.imshow(wc, interpolation='bilinear")
plt.axis('off")

plt.title('Word Cloud for Non-Humorous Words')

plt.show()

Word Cloud for Non-Humorous Words

daround =

make
women

ypeople

day:

good

list words add = ['none']
STOPWORDS . update(list words add)

all humorous words = "'
for idx, row in df.iterrows():
if row['humor'] == 1:

o0
S Wor 1d<==

Mom

end

change

t1ime

american el
-

-
=T

all humorous words += ' ' + row['text'].strip()

wc = WordCloud(width=1024, height=1024, min font size=8,
stopwords=STOPWORDS) .generate(all humorous words)

Display the word cloud
plt.figure(figsize=(8, 8))

plt.imshow(wc, interpolation='bilinear")
plt.axis('off")

plt.title('Word Cloud for Humorous Words')
plt.show()

Word Cloud for Humorous Words

),
U
C
),
 hee
e,
Y
=

all humorous words[0:500]

" What do you call a turtle without its shell? dead. What is a pokemon
master's favorite kind of pasta? wartortellini! Why do native
americans hate it when it rains in april? because it brings
mayflowers. My family tree is a cactus, we're all pricks. How are
music and candy similar? we throw away the rappers. I just ended a 5
year relationship i'm fine, it wasn't my relationship :p Dating tip:
surprise your date! show up a day early. What do you call an
explanation of an asian cooking show? a wok"

#Creating the Embedding Matrix
embedding dim = 250

embedding matrix = np.random.rand(vocab size, embedding dim)

print("Shape of the embedding matrix:", embedding matrix.shape)
Shape of the embedding matrix: (111615, 250)

x_train, x val, y train, y val = train test split(texts, labels,
test size=0.2, random state=42)

#Building the model
model = Sequential()

model.add (Input(shape=(maxlen)))

model.add (Embedding(vocab size, 250, weights=[embedding matrix],
input length=maxlen, trainable=False))

model.add(Bidirectional (LSTM(64, activation='relu', dropout=0.15,
return sequences=True), merge mode='concat'))
model.add(TimeDistributed(Dense(64, activation='relu')))

model.add (LSTM(256, activation='relu', dropout=0.15,

return sequences=False))

model.add(Flatten())

model.add(Dense (256, activation='relu'))
model.add(Dropout(0.25))

model.add(Dense(2, activation='softmax'))

model.compile(loss="'sparse categorical crossentropy',
optimizer="'adam', metrics=['accuracy'])

model.summary ()

2023-05-14 12:03:52.623884: I
tensorflow/core/platform/cpu feature guard.cc:193] This TensorFlow
binary is optimized with oneAPI Deep Neural Network Library (oneDNN)
to use the following CPU instructions in performance-critical
operations: SSE4.1 SSE4.2

To enable them in other operations, rebuild TensorFlow with the
appropriate compiler flags.

Model: "sequential"

Layer (type) Output Shape Param #
embedding (Embedding) (None, 15, 250) 27903750
?idirectional (Bidirectiona (None, 15, 128) 161280
time distributed (TimeDistr (None, 15, 64) 8256
ibuted)

lstm 1 (LSTM) (None, 256) 328704
flatten (Flatten) (None, 256) 0
dense 1 (Dense) (None, 256) 65792
dropout (Dropout) (None, 256) 0
dense 2 (Dense) (None, 2) 514

Total params: 28,468,296
Trainable params: 564,546
Non-trainable params: 27,903,750

Train the model for 20 epochs, displaying the loss, accuracy,
validation loss, and validation accuracy for each epoch

epochs = 20

batch size = 800

Define the ModelCheckpoint callback to save the best model

mc = ModelCheckpoint('model.h5",
monitor='val sparse categorical accuracy', mode='max', verbose=1,
save best only=True)

Train the model
history = model.fit(x train, y train, epochs=epochs,
batch size=batch size, validation data=(x val, y val), callbacks=[mc])

Epoch 1/20

200/200 [] - ETA: 0s - loss: 0.5201 -
accuracy: 0.7446WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 67s 329ms/step - loss:
0.5201 - accuracy: 0.7446 - val loss: 0.3485 - val accuracy: 0.8535
Epoch 2/20

200/200 [] - ETA: 0s - loss: 0.3618 -

accuracy: 0.8473WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 65s 324ms/step - loss:
0.3618 - accuracy: 0.8473 - val loss: 0.2997 - val accuracy: 0.8778
Epoch 3/20

200/200 [] - ETA: Os - loss: 0.3111 -

accuracy: 0.8724WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 317ms/step - loss:
0.3111 - accuracy: 0.8724 - val loss: 0.2735 - val accuracy: 0.8916
Epoch 4/20

200/200 [] - ETA: Os - loss: 0.2812 -

accuracy: 0.8865WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 317ms/step - loss:
0.2812 - accuracy: 0.8865 - val loss: 0.2554 - val accuracy: 0.8962
Epoch 5/20

200/200 [] - ETA: 0s - loss: 0.2659 -

accuracy: 0.8936WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 66s 329ms/step - loss:
0.2659 - accuracy: 0.8936 - val loss: 0.2446 - val accuracy: 0.9015
Epoch 6/20

200/200 [] - ETA: 0s - loss: 0.2504 -

accuracy: 0.9004WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 65s 327ms/step - loss:
0.2504 - accuracy: 0.9004 - val loss: 0.2293 - val accuracy: 0.9084
Epoch 7/20

200/200 [] - ETA: 0s - loss: 0.2395 -

accuracy: 0.9045WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 66s 332ms/step - loss:
0.2395 - accuracy: 0.9045 - val loss: 0.2147 - val accuracy: 0.9142
Epoch 8/20

200/200 [] - ETA: 0s - loss: 0.2263 -

accuracy: 0.9105WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 65s 325ms/step - loss:
0.2263 - accuracy: 0.9105 - val loss: 0.2107 - val accuracy: 0.9162
Epoch 9/20

200/200 [] - ETA: Os - loss: 0.2202 -

accuracy: 0.9134WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 317ms/step - loss:
0.2202 - accuracy: 0.9134 - val loss: 0.2047 - val accuracy: 0.9197
Epoch 10/20

200/200 [] - ETA: Os - loss: 0.2128 -
accuracy: 0.9163WARNING:tensorflow:Can save best model only with

val sparse categorical accuracy available, skipping.

200/200 [] - 63s 317ms/step - loss:
0.2128 - accuracy: 0.9163 - val loss: 0.1994 - val accuracy: 0.9225
Epoch 11/20

200/200 [] - ETA: Os - loss: 0.2080 -
accuracy: 0.9194WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 65s 326ms/step - loss:
0.2080 - accuracy: 0.9194 - val loss: 0.1955 - val accuracy: 0.9237
Epoch 12/20

200/200 [] - ETA: Os - loss: 0.2040 -
accuracy: 0.9202WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 316ms/step - loss:
0.2040 - accuracy: 0.9202 - val loss: 0.2015 - val accuracy: 0.9228
Epoch 13/20

200/200 [] - ETA: Os - loss: 0.1985 -
accuracy: 0.9226WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 317ms/step - loss:
0.1985 - accuracy: 0.9226 - val loss: 0.1833 - val accuracy: 0.9276
Epoch 14/20

200/200 [] - ETA: Os - loss: 0.1957 -
accuracy: 0.9236WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 315ms/step - loss:
0.1957 - accuracy: 0.9236 - val loss: 0.1851 - val accuracy: 0.9272
Epoch 15/20

200/200 [] - ETA: Os - loss: 0.1909 -
accuracy: 0.9255WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 65s 325ms/step - loss:
0.1909 - accuracy: 0.9255 - val loss: 0.1808 - val accuracy: 0.9287
Epoch 16/20

200/200 [] - ETA: Os - loss: 0.1877 -
accuracy: 0.9266WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 64s 322ms/step - loss:
0.1877 - accuracy: 0.9266 - val loss: 0.1745 - val accuracy: 0.9316
Epoch 17/20

200/200 [] - ETA: Os - loss: 0.1860 -
accuracy: 0.9280WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 65s 324ms/step - loss:
0.1860 - accuracy: 0.9280 - val loss: 0.1796 - val accuracy: 0.9303
Epoch 18/20

200/200 [] - ETA: Os - loss: 0.1824 -
accuracy: 0.9289WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 69s 345ms/step - loss:
0.1824 - accuracy: 0.9289 - val loss: 0.1699 - val accuracy: 0.9333
Epoch 19/20

200/200 [] - ETA: Os - loss: 0.1786 -
accuracy: 0.9313WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 315ms/step - loss:
0.1786 - accuracy: 0.9313 - val loss: 0.1695 - val accuracy: 0.9329
Epoch 20/20

200/200 [] - ETA: Os - loss: 0.1776 -
accuracy: 0.9311WARNING:tensorflow:Can save best model only with
val sparse categorical accuracy available, skipping.

200/200 [] - 63s 314ms/step - loss:
0.1776 - accuracy: 0.9311 - val loss: 0.1684 - val accuracy: 0.9344

The model was trained for 20 epochs, and during the training process, we can observe that both
the training loss and validation loss decreased. This indicates that the model was learning
effectively from the data. Moreover, the training and validation accuracies increased, reaching
around 93.11% and 93.44%, respectively, by the end of the training. This suggests that the
model has a good performance in predicting humor based on the given text data.

Get the training and validation accuracy
train accuracy = history.history['accuracy']
val accuracy = history.history['val accuracy']

Get the training and validation loss
train loss = history.history['loss']
val loss = history.history['val loss']

Plot the training and validation accuracy
plt.figure(figsize=(8, 6))

plt.plot(range(1l, epochs+1l), train accuracy, label='Training
Accuracy')

plt.plot(range(1l, epochs+1l), val accuracy, label='Validation
Accuracy')

plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs")

plt.ylabel('Accuracy')

plt.legend()

plt.show()

Plot the training and validation loss

plt.figure(figsize=(8, 6))

plt.plot(range(1l, epochs+1l), train loss, label='Training Loss"')
plt.plot(range(1l, epochs+1l), val loss, label='Validation Loss"')
plt.title('Training and Validation Loss')

plt.xlabel('Epochs")

plt.ylabel('Loss")

plt.legend()
plt.show()

Training and Validation Accuracy

0.925

0.900 A

0.875 A

0.850 A

Accuracy

0.825

0.800 A

0.775 A

—— Training Accuracy
0.750 —— Validation Accuracy

25 50 75 100 12.5 150 17.5 20.0
Epochs

Training and Validation Loss

— Training Loss

0.50 - —— Validation Loss

0.45
0.40
a0.35
5
0.30
0.25

0.20 1

2.5 5.0 7.5 10.0 125 150 17.5 20.0
Epochs

Evaluate the model on the test set and display the precision,
recall, fl-score, and accuracy for each class (humorous and non-
humorous)

decode label = {0: 'False', 1: 'True'}

y_pred = []

y true = []

pred = model.predict(x val)

pred = np.argmax(pred, axis=-1)

y pred = [decode label[int(i)] for i in pred]
y true = [decode label[int(i)] for i in y vall]

print(classification report(y true, y pred, digits=3))

1250/1250 [] - 14s 11lms/step
precision recall fl-score support

False 0.929 0.941 0.935 20001

True 0.940 0.928 0.934 19999

accuracy 0.934 40000
macro avg 0.935 0.934 0.934 40000
weighted avg 0.935 0.934 0.934 40000

The evaluation of the model on the test set shows high precision, recall, and f1-score for both
the humorous (True) and non-humorous (False) classes, with values around 0.92 to 0.94. The
overall accuracy of the model is 93.4%, indicating that it performs well in classifying text as
humorous or non-humorous. The macro and weighted averages of the precision, recall, and f1-
score are also around 0.935, further confirming the model's good performance on the test data.

Plot a confusion matrix heatmap for the model's predictions,
displaying the percentage of correctly and incorrectly classified
instances for humorous and non-humorous classes

cm = confusion matrix(y true, y pred)

plt.figure(figsize=(7, 5))

ax = sns.heatmap(cm / np.sum(cm), fmt='.2%', annot=True, cmap='Blues"')

ax.set xlabel('\nPredicted Values')
ax.set ylabel('Actual Values')

ax.xaxlis.set ticklabels(['False', 'True'])
ax.yaxis.set ticklabels(['False', 'True'])

plt.show()

0.45

0.40

0.35

False

0.30

- 0.25

-0.20

Actual Values

=015

True

-0.10

-0.05

False True

Predicted Values

The model correctly classified 47.05% of the non-humorous instances (True Negative, TN) and
46.40% of the humorous instances (True Positive, TP). The model misclassified 2.96% of the
instances as humorous when they were actually non-humorous (False Positive, FP), and 3.60%
of the instances as non-humorous when they were actually humorous (False Negative, FN). The
confusion matrix shows that the model has a relatively low rate of misclassification, which is
consistent with the high precision, recall, and f1-score values observed earlier.

Define a function to preprocess input text, make predictions using
the trained model, and return the predicted humor label (True or
False)

def predict(text):
text = tokenizer.texts to sequences([text])
if len(text) > maxlen:
text = text[:maxlen]
text = pad sequences(text, maxlen=maxlen, dtype='float"',
padding="'post', value=0.0)

text = np.array(text)
pred = model.predict(text)
pred = np.argmax(pred, axis=-1)

decode label = {0: 'False', 1: 'True'}

pred = decode label[pred[0]]
return pred

text = "If you live each day as if it was your last, some day you'll
most certainly be right." #Steve Jobs

pred = predict(text)

print("Text:", text)

print('Humor detected: ', pred)

1/1 [] - Os 155ms/step

Text: If you live each day as if it was your last, some day you'll
most certainly be right.
Humor detected: True

text = "he cat slept peacefully on the warm windowsill, enjoying the
afternoon sun."

pred = predict(text)

print("Text:",text)

print('Humor detected: ', pred)

1/1 [] - 0s 19ms/step

Text: he cat slept peacefully on the warm windowsill, enjoying the
afternoon sun.

Humor detected: False

text = "The diligent gardener carefully pruned the rose bushes,
creating a beautiful and well-manicured garden."

pred = predict(text)

print("Text:", text)

print('Humor detected: ',6pred)

1/1 [] - 0s 27ms/step

Text: The diligent gardener carefully pruned the rose bushes, creating
a beautiful and well-manicured garden.

Humor detected: False

text = "I told my wife she was drawing her eyebrows too high; she
looked surprised.”

pred = predict(text)

print("Text:", text)

print('Humor detected: ', pred)

1/1 [] - Os 19ms/step

Text: I told my wife she was drawing her eyebrows too high; she looked
surprised.

Humor detected: True

text = "Why don't some couples go to the gym? Because some
relationships don't work out!"
pred = predict(text)

print("Text:", text)
print('Humor detected: ',6pred)

1/1 [] - 0s 21ms/step

Text: Why don't some couples go to the gym? Because some relationships
don't work out!

Humor detected: True

text = "Did you see the magnificent sunset tonight? The colors were
absolutely breathtaking!" #no-humor

pred = predict(text)

print("Text:", text)

print('Humor detected: ', pred)

1/1 [] - Os 38ms/step

Text: Did you see the magnificent sunset tonight. The colors were
absolutely breathtaking.
Humor detected: True

It looks like you can fool the model with sentences that have the same structure as a joke
(question and answer).

text = "Three elephants fell off a cliff, which was quite a surprise,
considering it was a calendar"

pred = predict(text)

print("Text:",text)

print('Humor detected: ',6pred)

1/1 [] - 0s 20ms/step

Text: Three elephants fell off a cliff, which was quite a surprise,
considering it was a calendar
Humor detected: True

In this notebook, we have successfully implemented a deep learning model to detect humor in
text. We preprocessed the text data, tokenized it, and created an embedding matrix for the
words. We then built, trained, and evaluated a Bi-directional LSTM model, achieving high
precision, recall, and f1-score values. Finally, we created a function to make predictions on new
text inputs, allowing us to apply our trained model to real-world applications.

With the promising results obtained from this notebook, further improvements could be
explored, such as fine-tuning the model's hyperparameters, incorporating additional features, or
experimenting with different model architectures.

